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INTRODUCTION:

During the last decade, interest in computer-assisted diagnosis (CAD) schemes for the early
detection of breast cancer on mammograms has been rapidly increasing, and a large variety of
schemes have been developed and tested. As a result, it is believed that eventually CAD schemes
could provide radiologists with useful information to improve the efficiency and accuracy in the
diagnosis of breast cancer. However, prompting potential areas of abnormalities can affect the
mammographic interpretation process, and unfortunately, the effect may not be always beneficial.
Therefore, to better understand the radiological interpretation process, we are conducting this
experiment to examine how different CAD cueing environments affect the error rate (particularly
for false-negative interpretations). For this purpose, an observer performance experiment is being
conducted using an ROC-type methodology. From the relationship between the CAD cueing levels
and average diagnostic performance (i.e., areas under the ROC curves), we hope not only to better
understand the impact of CAD cueing on diagnostic performance, but also demonstrate an optimal
approach to use CAD schemes in the clinical screening environment.

BODY (Statement of Work Tasks):

During the first year of this project, we have performed the following tasks:

1. Case selection.

To prepare for the observer performance study in this project, we selected 120
mammographic studies from a large clinical database available in our laboratory. These studies
were acquired on 120 patients undergoing routine mammographic screening at three different
medical centers. Of these 120 studies, 85 are abnormal (positive) and 35 are negative. The positive
cases include a total of 38 verified microcalcification clusters (27 malignant and 11 benign) and 57
masses (39 malignant and 18 benign). Most of these studies include two images (the same view of
the left and right breasts), but some (31) have only one image. Table 1 lists the number of studies in
different categories. All positive cases were verified by pathological (biopsy) reports. All negative
cases are determined based on follow-up mammographic examination results. All the studies were
considered “subtle” ones, because the images involve either subtle abnormalities or complex, but
normal anatomy. All the original film mammograms from these cases have been digitized in our
laboratory using a high quality film digitizer with 12 bit gray-level resolution and 100 pm x100 pm
pixel sizes.




Table 1: Number of image studies in different categories. (M = malignant, B = benign).

Mass Microcalcification | Mass and Cluster | Negative | Total
Cluster Cases
M B M B M B
Single image studies 10 1 11 3 1 1 4 31
Two image studies 20 16 7 7 8 0 31 89
Total studies 30 17 18 10 9 1 35 120

2. Case Preparation

a) CAD processing and cueing mode design.

To find suspicious regions (for both masses and microcalcification clusters), every image in
the database was first processed by our CAD scheme. This CAD scheme utilizes a rule-based
classifier to detect microcalcification clusters and an ANN (artificial neural network) to identify
mass regions. 38 true-positive clusters and 28 false-positive clusters (or 0.14 false-positive
detections per image) were detected by the scheme. In order to include more false-positive clusters
in the experiment, we opened (loosened) the rules except in the final re-clustering stage of the
scheme. Then the false-positive clusters identified by the modified scheme were increased to 95 (or
0.46 per image). In mass detection, after image segmentation and multi-layer topographic region
growth, a total of 57 true- and 774 false-positive regions (or 3.7 per image) were identified in these
209 images. The ANN was then used to classify these regions. The ANN assigned a score (from 0
to 1), which correlates with the likelihood of the region representing a true mass. All of the
identified masses and microcalcification clusters described above were used as candidates for
cueing during the observer performance study. In this experiment, five reading modes were
designed as shown in Table 2. Thus, each observer will read each study five times under five

different reading conditions.

Table 2: Five reading modes in the observer performance study.

Reading mode ROI Cued Cued sensitivity Cued FP / image
1 No 0 0
2 Yes 0.9 0.5
3 Yes 0.9 2
4 Yes 0.5 0.5
5 Yes 0.5 2




In each mode, both masses and microcalcification clusters have the same cueing sensitivity.
This way, we can not only evaluate the overall detection accuracy of the readers, but also examine
whether the readers have different responses to the detection of either masses or microcalcification
clusters under the same cueing sensitivity. There are a total of 95 verified abnormalities (57 masses
and 38 microcalcification clusters) in the database. The selection of regions for cueing mass or
clusters was performed independently. Each region is assigned a number. The cued regions were
randomly selected. In modes 2 and 3 (see Table 2), the sensitivity level is 0.9. 51 true-positive
mass regions and 34 true-positive clusters were selected and cued. In modes 4 and 5, the sensitivity
is 0.5. 29 masses and 19 clusters are cued. Modes 2 and 4 average 0.5 false-positive identifications
per image, while modes 3 and 5 average 2 false-positive identifications per image. To select the
false-positive regions, we first included all 28 initially detected false-positive microcalcification
clusters in modes 2 and 4. In modes 3 and 5, all 95 microcalcification clusters were selected and
cued. Then, two threshold values were used to select false-positive mass regions. Using these
thresholds, 79 mass regions were included in level one. Together with the 28 initial false-positive
detections, modes 2 and 4 included a total of 107 false identifications (or 0.51 per image). 334
false-positive mass regions were selected for the second level. Together with the initial 95 false-
positive clusters, reading modes 3 and 5 included a total of 429 false-positive regions (or 2.06 per
image).

b) Implementation of a computer-controlled image display system.

The readings in this study are performed on soft display. The radiologists will read these

120 studies in a random order five times (five reading modes). We designed, tested, and
implemented an automatic image display and control system. Each session includes a fixed number
of 30 studies. A computer program randomly selects display order. Based on the reading mode in-
each session, the cueing areas will be appropriately marked. To reduce the bias due to remembering
specific cases read before, the computer program excludes cases that had been read within a
specified period into the current reading session. The radiologist can view two images side by side
displayed on the monitor at a reduced resolution, or the radiologist can examine full resolution
images, one at a time using scrollbars in both vertical and horizontal directions (zoom and scroll).
The program is designed to accept radiologist’s inputs. If a suspicious region is identified, the
radiologist points the arrow to the center of the area and clicks the mouse. A message window then
appears, followed by a confidence slider window for scoring purposes. A computer mouse is the
only tool needed for the radiologists to input their diagnostic decisions.

3. Finalizing study protocol and performing pre-study training.

We have finalized the study protocol and selected seven radiologists to participate in this
observer performance study. All selected radiologists are Board certified with a minimum of three
years’ experience in the interpretation of mammograms. We have written and tested a
comprehensive “Instructions for Readers” document that is provided to each participating reader. A
set of sample cases have also been selected and incorporated into our display system. These samples
are used to train readers and familiarize them with the image display and diagnostic scoring system.




4.

Performing the main reading experiment.

The main reading experiment is now under way in our laboratory. We expect that the

reading experiment will be completed by April 2000. Once all the reading sessions are completed,
we will analyze the data using ROC-type methodology.

KEY RESEARCH ACCOMPLISHMENTS:

Selected 120 mammographic cases

Designed prompting cues for observers participating in the study
Incorporated the prompting cues in the CAD system

Algorithm development to perform study on soft display
Finalized study preparations

Initiated radiologist training on workstation and prompting system
Initiated the main reading experiment

REPORTABLE OUTCOMES:

Zheng B, Chang YH, Wang XW, Good WF, Gur D, Application of a Bayesian belief network in
a computer-assisted diagnosis scheme for mass detection, Proc SPIE on Medical Imaging 1999;

3661-167.

Zheng B, Wang XH, Chang YH, Good WF, Automatic detection of nipple and chest wall in
digitized mammograms, Proc Computer Assisted Radiology and Surgery, 13th International
Symposium and Exhibition, Paris, France, June 23-26, 1999.

Zheng B, Good WF, Wang XH, Chang YH, Comparison of artificial neural network and
Bayesian belief network in a computer-assisted diagnosis scheme for mammography, Proc
International Joint Conference on Neural Network, Washington, DC, USA, July 10-16, 1999

Zheng B, Good WF, Chang YH, Wang XH, Applying a genetic algorithm for the improvement

of decision making in medical image diagnosis, Proc IASTED International Conference on
Artificial Intelligence and Soft Computing, Honolulu, USA, August 9-12, 1999.

CONCLUSIONS:

There are five research tasks listed in the Statement of Work of this project. In the first year,

we have completed the first three tasks. Task four is now under-way. Thus, the study is moving
forward according to the proposed plan. Due to the blind nature of this project, the hypothesis
cannot be tested before readers complete all the reading sessions. Although at this current stage we
have not published any data or statistical analysis of results that are directly related to this observer
performance study, we presented several CAD related papers in four different international
conferences, which acknowledge the support of this research grant [see Reportable Outcomes, 1-4].
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ABSTRACT

The purpose of this study is to investigate the use of a Bayesian belief network (BBN) in a computer-
assisted diagnosis (CAD) scheme for mass detection in digitized mammograms. In this study, two independent
image sets were used. The training image set included 306 verified positive mass regions in 545 images (or 217
mass cases). The testing image set included 349 mass regions in 433 images (or 189 cases). All 978 images were
first processed by our rule-based CAD scheme. After image segmentation and adaptive topographic region growth,
288 regions depicting verified masses and 2,204 suspicious but actually negative regions were identified in the
training image set. In the testing set, 304 positive mass regions and 1,586 negative regions were identified. Fifty
features were computed for each region. Then, BBN was constructed in order to classify these regions as positive or
negative for mass. To optimize the number of active nodes in the BBN, a genetic algorithm (GA) was used to search
for an optimal subset of features. Twelve GA selected local features and four additional global image-based features
were then used to construct the BBN. The conditional probabilities across the BBN were computed using the regions
identified from the training image set. The performance of the BBN was evaluated using an ROC methodology. To
demonstrate the potential utility of the BBN, we compared the results using the BBN with that of an artificial neural

network (ANN) with the same set of input features. The BBN achieved an area under the ROC curve (Az ) of 0.873

£ 0.009 in classifying the 304 positive and 1,586 negative regions in the testing set. The highest Az value achieved

by the ANN was 0.858 £ 0.012. After incorporating the BBN into our CAD scheme as the last classification stage,
we detected 80% of 189 positive mass cases (in 433 testing images) with an average detection rate of 0:76 false-
positive regions per image. Therefore, this study demonstrated that a BBN approach could yield a comparable
performance to that using other classifiers. Using a probabilistic learning concept and interpretable topology, the
BBN provides a flexible approach to improving CAD schemes.

Key Words: Computer-assisted diagnosis, Bayesian belief network, Artificial neural network, Digital
Mammography, Cancer, Breast cancer diagnosis.

1. INTRODUCTION

After more than a decade of intensive research in the computer-assisted diagnosis (CAD) of mammography
by a large number of groups, many schemes for the detection of masses and microcalcification clusters have been
developed [1-10]. Although significant progress has been made in these new schemes, the result of a prospective
clinical study demonstrated to date a significant reduction in performance as compared with that achieved using the
databases for the optimization of the schemes [11]. Such results raise questions concerning feature domain coverage




when limited size databases are used for development of CAD schemes. The robustness of scheme performance
depends on many factors, including but not limited to case difficulty [12], size of training database [13], and
validation methods [14]. Data over-fitting during development is aiso a concern when CAD performance is
evaluated using independent databases [15].

Artificial neural networks (ANN) [16-18] and decision trees (DT) [2,5,18] have been widely used in current
CAD schemes to classify positive and negative regions. However, for ANN and DT based schemes data over-fitting
is a primary issue [19]. Using a “hill-climbing” method to search for an optimal separation mode! (boundary) in a
sparsely sampled multi-dimensional feature space, the classifier can easily be over-fitted. As a result, with increase
in the number of features or training iterations, CAD schemes that utilize limited size databases are likely to perform
poorly during independent testing. In contrast, the Bayesian Belief Network (BBN) uses a probabilistic approach to
determine an optimal segmentation given a specific database [19]. Because of this approach, the BBN method has
attracted wide research interests in several machine learning areas [19,20]. It has also been tested in a limited
manner for the computer-assisted diagnosis of breast cancer, using the information from radiologist’s reports in
conjunction with data from physical examination and patient clinical history [21]. However, BBN based schemes
have not been incorporated into CAD to identify masses in digitized mammograms.

The motivation for this preliminary study was to investigate the potential utility of a BBN in CAD schemes
for ass detection. A description of the approach, as well as the preliminary experimental results, is provided here.

2. MATERIALS AND METHODS

2.1. Clinical database

Two independently acquired image sets were used in this study. One was used for training and the other for
testing of the scheme. The training set included 545 images acquired on women undergoing mammographic
procedures at the University of Pittsburgh Medical Center and its affiliate hospitals and clinics in Pittsburgh, PA.
The testing set included 433 images provided to us by a research group from Washington University Medical School
in St. Louis, MO. All 978 images were digitized in our laboratory using a laser film digitizer (Lumisys 150) with a
pixel size of 100 pm x 100 um and 12-bit gray-level resolution. The digitized images were then sub-sampled by a
factor of four in both directions to generate new images of approximately 600 x 450 pixels. 306 and 349 visible
mass regions are included in the training and testing databases, respectively. The locations of all these mass regions
were marked by expert radiologists on the original mammograms. Because in some cases masses are only visible on
one view (either mediolateral oblique (MLO) or cranio-caudal (CC)) images and in other cases only one view image
was acquired, the number of actual mass cases are 217 and 189 depicted in the training and testing databases,
respectively.

The 978 images were individually processed by our multi-layer topographic based CAD scheme which has
been described elsewhere [4]. In brief, this scheme has three distinct stages to detect mass regions in a digitized
mammogram. The first stage of image segmentation (including dual kernel filtering, subtraction, thresholding, and
labeling) is used initially to search for all suspicious regions (approximately 20 regions per image in these two
databases). Based on local contrast measurement, the second stage uses an adaptive region growth algorithm to
define three topographic layers for each suspicious region. In each growth layer, a set of simple intra-layer boundary
conditions on growth ratio and shape factor of the region is applied to eliminate a large number of initial suspicious
regions. After the second stage, the number of suspicious regions (including actually positive and negative regions)
decreases to 4,382 (or approximately 4.5 per image) when applied to these 978 images. For each of remaining
regions, a set of features is automatically computed. In the third stage of the scheme, a nonlinear muiti-layer multi-
feature analysis is applied to classify positive and negative regions. The classification tools that have been
previously tested for this purpose in our studies include a rule-based classifier [4], an ANN [13], and set
enumeration trees [18]. In this study, a BBN was incorporated as a classification tool. All 4,382 suspicious regions
identified by the second stage of the scheme were included in the study to develop and test the BBN classifier.

As a result of this selection process, 288 actually positive regions and 2,204 suspicious but actually
negative regions were identified in the training database after the second stage of our CAD scheme. In the testing




database, 304 positive regions and 1,586 negative regions were identified. The diagnostic “difficulty” of the 592
positive and 3,790 negative regions, as represented by conspicuity or “lesion contrast” divided by “surrounding
complexity” [22], have been reported elsewhere [23].

2.2. Topology of a Bayesian belief network

A BBN is a graphical data structure that compactly represents the joint probability distribution of a problem
domain by exploiting conditional dependencies, and it captures knowledge of a given problem domain in a natural
and efficient way [24]. A BBN builds an “acyclic” graph in which nodes represent feature variables, and
connections between nodes represent direct probabilistic influences between the variables. Due to the properties of
“acyclic” connection and d-separation defined in the BBN [25], there is no feedback loop between any nodes and the
lack of connection (or path) between two nodes indicates the probabilistic independence of two variables. Each node
in a BBN represents one feature variable. Each variable must have two or more discrete states. For a discrete
variable, its digital or symbolic values can be used as the states of the node. For a continuous variable, the values
must be segmented into discrete states. Each state is then associated with a probability value; for each node, the
summation of probability values for all states equals to one. The conditional probabilities between connected nodes
can be assigned by established statistic data [21] or computed from a set of measured training data [26]. In general,
when the network structure is given in advance and the variables are fully observable in the training examples,
learning the prior and conditional probabilities is a straightforward procedure [25].

The nodes in the BBN were represented using the features computed by our CAD scheme. The feature set
for each suspicious region contained both local and global features. The local features were the features computed
from the interior of three topographic growth layers and surrounding background of each region [13,23]. The global
features were extracted from the whole image [27]. In this experiment, 50 local and four global features were
initially computed. The four global features were (1) the image view, (2) the region location, (3) ratio between peak
value in the histogram and the size of breast area, and (4) the average local fluctuation of the breast tissue. Figure 1
demonstrates a topology of the BBN designed for this experiment. Although the four global features are largely
independent to the presence of the suspicious mass regions, they may have impact on the detection difficulty of the

regions. Thus, these features ( Xx;;, i =1,2,3,4) were placed in the top of detection node, (Mass or Y in figure).
Meanwhile, since all the local features were computed from a suspicious region, they were placed as child nodes
(x3;, J=12,...,N) of the detection node in the BBN.

Each node in the BBN must have at least two discrete states. The detection node has two states, Positive or
Negative. The global features were discrete features. Feature 1 has two states (MLO or CC), feature 2 has four states
(upper outer, upper inner, lower outer, and lower inner), features 3 and 4 have three states (low, middle, and high).
The local features are continuous numbers, which must be segmented into discrete states. Based on our experimental
result, which has been reported elsewhere [28], all local features were segmented into five discrete states. Using the
range of values for each, the segmentation boundaries wi.;e. determined with the criterion that all states contained
approximately the same number of regions.

Next, using our training database, all the required conditional probabilities used in the BBN were
computed. Based on the number of possible permutation and combination, the following 72 conditional probabilities
were required for a complete probability table between the global feature nodes and the detection node:

P (Y = Positivel x;; =1,x, =1, x; =L x, =1);
P,(Y = Negativel x,, =1,x,, =L, x; =1, x, =1);
P,(Y = Positivel x,, =1, x,, =Lx; =1,x, =2);

.................................... >

Py, (Y = Negative | x,, =2,x,, =4,x,, =3,x,, =3).

Because P, =1—F,, ..., P, =1—P,;, only 36 values are independent. The detection node also has up

to 50 child nodes. Since each local feature has five states and detection node has two states, 10 conditional




probabilities for each node, such as P(x; =11Y = Positive) and P(x, =11Y = Negative), were

computed. 8 of 10 conditional probabilities are independent in each node. Thus, ups to 400 independent conditional
probabilities were determined between the detection node and local feature nodes. All of these conditional
probabilities form a complete set of connection weights applied in the BBN.

2.3. Optimal feature selection using a genetic algorithm

Although 50 local features were initially computed for each suspicious region, many may be highly
correlated or have little contribution to the separation of actually positive and negative mass regions. To reduce the
redundancy, we used a genetic algorithm (GA) [29] to select an optimal feature set.

The GA software we used, GENESIS, was downloaded from Prime Time Freeware for AI [30]. The
software provides a basic program structure for the optimization, such as initialization, evaluation, recombination,
crossover, and mutation of chromosomes. To run the program, the user needs to provide both a fitness function and
an evaluation criterion. The user also needs to run first its setup routine to set up the encoding format of the
chromosomes as well as the other required parameters. In this experiment, each chromosome contained 50 genes,
which represented 50 local features. The binary coding was used to create the chromosome, with / indicating the
presence of a gene (the feature was used in the BBN) and 0 indicating absence of the gene (the feature was not used
in the BBN). The initial population size of the chromosomes was selected as 50. In order to incorporate our previous
experiences in the feature selection and also to achieve a diverse initial population, about one third of initial
chromosomes (16 of them) were specifically selected with small number of bits of 1 (< 10), while the rest of initial
population was randomly assigned by software. The crossover rate, the mutation rate, and the generation gap were
set up at 0.6, 0.001, and 1.0, respectively. These three values are default levels suggested by the GENESIS.

The evaluation subroutine in GENESIS was connected to the BBN testing. All conditional probabilities
required in the BBN were computed for the 288 positive and 2,204 negative regions in the training database. The
independent testing database that included 304 positive mass regions and 1,568 suspicious but negative regions was
used in the GA optimization experiment. The chromosomes generated by the GA determined which features were
selected for the BBN. The testing result from the BBN was analyzed by ROC methodology using the program
ROCFIT [31]. The chromosomes that produced higher areas under the ROC curves (AZ values) survived and used
to create new chromosomes in next generation. The GA was terminated when better chromosome could not be
found in the new generation. Then, an optimal local feature set that produced the best Az value was actually used in

the BBN.
2.4. Comparison between the ANN and BBN the same CAD scheme

Since the performance of a CAD scheme depends heavily on the case difficulty and there is no commonly
accepted method to measure this parameter [12], without an objective comparison, reporting the performance of the
BBN in absolute terms may be meaningless. Therefore, we compared the performance of the BBN with an ANN.
ANN performance in this case has been demonstrated in a large number of independent studies, including ours
[13,18,23]. The ANN was trained and tested using the same features and the same databases as that used by the
BBN. The detailed structure and training method of the specific ANN has been reported elsewhere [13]. To test the
robustness of the ANN, five different iterations (500, 1.000, 2,000, 3,000, and 5,000) were used for training. After
each training, the ANN was tested with the same independent testing database using ROC analysis.

2.5. Evaluation of a BBN-based CAD scheme for mass detection

Finally, we incorporated the BBN into our CAD scheme as its classification tool in the third stage. Areas
under the ROC curves (AZ) and false-positive detection rates at 80% detection sensitivity were used as summary

indices of performance.




3. RESULTS

After evolution of 50 generations, the GA selected 12 local features from the original 50 features. The 12
features were listed in table 1 and their methods of computation have been reported elsewhere [13,23,27]. Usmc

these 12 features the area under ROC curve ( A ) for the testing database was 0.873 + 0.009.

Table 1: Local feature set selected by the GA from the 50 original features.

Feature Number Description of the Feature

Region size in the third growth layer.

Region contrast in the third layer.

Skewness of pixel values inside the third growth layer.

Circularity in the third layer.

Size growth ratio between the second and the third layers.

Ratio of local minimum pixels inside the growth region of the third layer.
The central position shift between the second and the third layer.

Ratio of pixels whose values are smaller than growth threshold in the third layer in
surrounding background.

9 Region conspicuity.

10 Standard deviation of pixel values in the second layer.

11 Circularity of growth region in the first layer.

12 Ratio of largest and shortest radial lengths in the first layer.

00NN Hh W M=

With the same 16 features (12 local ones selected by the GA and 4 global ones), an ANN, which involved
16 input neurons and 8 hidden neurons, was trained and tested using the same databases. Figure 2 demonstrates the
over-fitting pattern of the ANN. The optimal testing performance of the ANN is 0.858 + 0.012 using 1,000 training
iterations. As a result, the BBN outperformed the ANN in testing by 1.5%. Figure 3 shows the two ROC curves that
representing the highest performance achieved using the BBN and the ANN in this experiment.

After incorporating the BBN into our CAD scheme, the performance on the complete 433 images in the
testing database is demonstrated in figure 4. There are total 189 mass cases (or 349 visible mass regions) in this
database. Before using the BBN, the CAD scheme (the first two stages) has de*zcted 180 mass cases (95.2%) or 304
mass regions (87.1%) with average 3.6 false-positive regions per image. Flgure 4 shows two curves. One curve
represents the result of case-based detection, where a mass is considered as detected by the scheme if it is detected in
either one view (CC or MLO) or both views. The second curve (dash curve) shows the result for a region-based
detection, where one mass depicted in two view images is considered as two independent detection targets. For
example, by setting appropriate thresholds in these two curves, the CAD scheme can detect 80% of 189 positive
cases with an average of 0.76 false positive regions per image, or 80% of 349 positive regions with an average of
1.45 false positive identifications per image. At a case-based detection sensitivity level of 80%, 57.5% (or 249)
images did not have any false-positive regions identified.

4. DISCUSSIONS

To develop a successful CAD scheme, it is important to have both high performance and robustness in
independent testing with “images never seen” to the scheme. Although it has been a popular classification tool for
the CAD in mammography, ANN has several disadvantages in classifying complex and diverse data, in particular,




when the number of training samples is limited. First, in a complex and noisy multi-dimensional feature space, the
ANN may reach a locally optimal solution based on the randomized selection of initial values of the weights. In
such a case, the ANN may become unstable. Second, an ANN uses a “black-box” learning approach that makes
ANN’s knowledge inaccessible to simple human understanding. There is no way to meaningfully explain the
reasoning of an ANN and the weights associated with it [32]. Therefore, it is difficult to select a best topology of the
ANN for a large number of specific applications. Third, over-fitting is also a significant difficulty in ANN training.
Due to these factors, it is sometime difficult to maintain a robust performance of a CAD scheme using this
methodology when the ANN is trained by a small number of samples. Robustness issues are not unique to ANN
methodology, it also exists in other optimization algorithms (i.e., rule-based discriminant functions and decision-
trees). As a result, performance of CAD schemes may be significantly variable not only when testing a new set of
images but also when testing the same set of images acquired under different condition (e.g., digitized at different
times [33] or when using different digitizers [34]).

The BBN uses a different learning approach as compared with the ANN. Unlike “a black box” approach,
BBN can more flexibly represent incomplete knowledge or uncertainty. It allows users to specify dependence and
independence of features in a more natural way through the network topology. The learning process in a BBN to
determine the weights (the conditional probabilities) between connected nodes can be directly computed from actual
measurements. The meaning of the weights is also more understandable [35]. By eliminating “hill-climbing”
learning type process, the danger of over-fitting can be reduced in this approach. The main factor that affects the
robustness of the network originates from the bias of the learning samples, which affects the accuracy of the
conditional probabilities.

In summary, ANN and BBN are two common machine learning algorithms for pattern recognition [19].
Unlike ANN, BBN has not been applied to the mass detection in mammograms to date. The results of our
preliminary experiment are encouraging. BBN may provide a flexible, stable, and understandable approach to
improving the performance and robustness of the CAD schemes.
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Figure 1: Topology of a Bayesian belief network (BBN) for mass detection used in this experiment.
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This study developed a fully automatic algorithm for the detection of nipple and chest
wall in digitized mammograms. The algorithm involves four steps to sequentially search for
skin-air interface, chest wall, and nipple location. 334 images were used in the experiment.
These images were divided into three difficult groups. Using the maximum matching
difference of 10 mm between visual and automatic detections as a criterion, 99%, 82%, and
62% of nipple detections were matched in the easy, moderately difficult, and difficult image
groups, respectively. For chest wall detection, 140 cases in a total 156 MLO images (90%)
were matched. This study demonstrates a simple and fully automatic algorithm that has the
potential to be applied in computer-assisted diagnosis (CAD) schemes of mammography.

1. INTRODUCTION

For the last decade, large number of CAD schemes in mammography has been
reported, but most of them have not been successful in the clinical environment. One reason
may be the different approaches used between radiologists and CAD schemes. The
radiologists routinely compare corresponding regions of two images, either images of right
and left breasts or images from two views of the same breast, to detect abnormalities. For a
difficult case, radiologists may call images from previous examination for comparison. Thus,
extraction and comparison of features from two related images might also be an important
step to significantly improve CAD performance. The success of this approach relies on the
correct registration of two images. Due to dominated soft tissue in the breast, the nipple is the
only landmark. Developing an algorithm for automatic detection of nipple location is the first
step in computerized image registration and feature comparison. Therefore, in this study, we
developed a fully automatic and multi-stage algorithm to detect the nipple and chest wall (for
MLO images). The accuracy of the algorithm was then evaluated by a large database. The
detailed description of our algorithm, the database, and experimental results is reported here.

2. MATERIALS AND METHODS

: The image database involved a total of 334 digitized mammograms, which were
randomly collected from 92 women undergoing breast examinations at University of
Pittsburgh Medical Center. These images were digitized in our laboratory using a digitization
protocol reported before [1]. Due to the variety of image quality, the nipple locations may not
be always visible in images. After analyzing the database, we set up following hypotheses:
1. A small and obvious protruding area in a smooth skin boundary (interface between
breast and background) can indicate the location of a not in profile nipple.
2. If a nipple is in profile, it is likely to be located in an area where the pixel values are
not only relatively unchanged but also significantly smaller than that of any other
tssue regions near the skin boundary.




3. For images with poor visual quality around skin boundary, a point in skin boundary
that has the longest distance to the chest wall is assumed as the location of a nipple.
Based on these hypotheses, we developed a multi-stage automatic algorithm to detect the
nipple and chest wall in the image. It includes four major steps.

The first step is to find the skin-air interface in an image. In this algorithm, we use an
iterative thresholding method to search for the smoothest transition boundary between the
skin-air interface in the image. Typically, there are two major hills in an image histogram.
One widely spread hill represents the pixel value distribution of breast area, while the another
narrow hill in the higher digital value region indicates the air background. The threshold
value to segment the skin-air interface is located in the valley between two hills. In this
algorithm, a set of threshold values is selected in the valley. In each threshold, the computer
program defines a segmented image and tracks the skin-air interface boundary. Then, the
smoothness of all tracked boundaries is compared. The computation is performed based on
the standard deviation of the distance in two adjacent points in the tracked skin line. The
smoothest curve in this set of iterative tracking curves is selected as the skin boundary.

The second step is to search for a small but obvious protruding area along the skin
boundary. If the nipple is visible by raising window level and reducing window size in the
image, there will be a small but obvious protruding area outside the skin boundary. To find
such a small protruding area, for every tracked point from in skin boundary, a line is drawn
(or calculated) to link two points that are 40 track points away. The area covered by the
tracked skin boundary and the line is computed. The maximum area detected along the skin
boundary is the first candidate for the nipple. If this area is larger than a pre-determined
value, the most protruding point in this area is identified as the nipple location.

The third step is to search for a small area with a substantially low pixel value but
relative uniform distribution, which is located adjacent to the skin boundary inside the breast
area. If there is no obvious protruding area in skin boundary as described in the previous step,
the computer program is going to search for the nipple in profile. A square window of 20 x
20 pixels is used to scan along the skin boundary. The computer program measures the
medium pixel value and the standard deviation of pixel values inside the window. Then, an
area with the smallest medium pixel value is considered as the second candidate for the
nipple. If it can pass a simple rule-based criterion, the area is considered to represent a nipple
in profile and the center of the area is defined as the nipple location.

The fourth step is to detect chest wall. If the nipple is invisible and there is no clear
skin-air interface in the image due to a variety of clinical reasons, the nipple position can not
be detected in steps 2 and 3. Thus, we use the concept of maximum height of the breast
border [2] to estimate the nipple location. The maximum height of the breast border in our
algorithm is defined as the maximum distance between the skin boundary and chest wall. For
the CC or a few LO images, we assume that the chest wall is parallel to the edge of the film,
because chest walls are not visible in these images. Hence, the maximum distance is the same
as the maximum height of the breast border. For the MLO images, the algorithm detects
chest wall based on the process of maximum gradient search along each horizontal line
scanning and line fitting of the maximum gradient points using least square method. Every
image in the database has been oriented so that the chest walls always locates in the left side




of the image. Then from the top of the image the computer program scans horizontally from
the left edge of the image until the 10 pixels before reaching the skin boundary. Along the
scanning line, the computer program calculated the gradient of pixel value change along the
line. The point with the maximum gradient ( g(x,),, >100) is considered as a point located

in the chest wall for this scanning line. If in a scanning line, 8(x;) mx £100, this line is

skipped because there is no clear point that indicates the location of chest wall in this line.
The computer program will automatically stop scanning when 8(x)my >100 and x, <5.

Then, the least square method is used to fit all the points ( x;,y;) recorded as the maximum

gradient point. The fitted line is defined as the chest wall. Once the chest wall is defined, the
distance between the chest wall and every point in the skin boundary is computed. Then, the
point in the skin line with maximum distance to chest wall is estimated as the nipple location.
Correctly detecting the chest wall in the MLO images is also very useful for the future image
registration and comparison. Thus, in this study, we compute the chest wall for all MLO
images and examine the detection accuracy of the algorithm.

Since the performance of CAD schemes depends on the difficulty of the database [3],
we set up three criteria to divide 334 images into three groups, which are easy, moderately
difficult, and difficult groups. The easy group contains images where the image has a
relatively clear skin boundary and the nipple location is visible. The moderately difficult
group involves the images where the skin boundaries are vague and the nipple locations are
ambiguous. The difficult group includes images where both the skin-air interface is difficult
to separate and the nipple is totally invisible. Based on these criteria, the easy, moderately
difficult, and difficult groups contain 139, 67, and 128 images, respectively. All of the nipple
and chest wall locations were first visually marked or estimated if the nipple is invisible in
the image. The coordinates for all the nipples and chest walls were saved in a “truth” file.
Before testing the performance of the algorithm, 30 images from the easy group were
randomly selected as training (rule-setting) images. Based on the analysis of these images,
two simple identification criteria were set up in the algorithm. They are the minimum size of
the protruding area and the minimum pixel value difference between skin boundary and low
uniform density area. The remaining 304 images were then used to test the accuracy of the
algorithm by comparing matching difference between the visually and automatically located
nipple and chest wall of the same image. In this experiment, if the distance between two
matching targets was smaller than 10 mm, two targets were considered as matched.

3. RESULTS

For the nipple detection in 304 testing images, 242 images (80%) were matched. In the
three difficult image groups, 108 images matched (99%) in the easy group; 55 images (82%)
matched in the moderately difficult group; and 79 images (62%) matched in the difficult
group. Figure 1 demonstrates the matching histogram in these three groups.

For chest wall detection, the matching difference is smaller than Smm in 125 images.
In another 15 images the difference is between 5 to 10mm. As a result, 90% of cases (in 136
MLO images) are considered matched using the threshold of maximum 10mm difference.
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Figure 1: The histogram of matching distance in three image groups.

4. DISCUSSIONS

In this study, we developed a simple multi-stage algorithm to automatically detect the
nipple and chest wall in digitized mammograms. The algorithm was tested by a relatively
large and diverse database. The result is encouraging. For the cases where nipple positions
can be visually located, the algorithm achieved very high detection accuracy. For other cases
where nipple positions are invisible, using the maximum distance between skin line and chest
wall as an estimation criterion also yielded a reasonable accuracy. It should be noted that for
these invisible cases, visually located nipple positions might not be always accurate. Further
improving our algorithm in the design and testing will: e conducted in our future studies.
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Abstract

Artificial neural networks (ANN) have been widely used in
computer-assisted diagnosis (CAD) schemes as a
classification tool to identify abnormalities in digitized
mammograms. Because of certain limitations of ANN,
some investigators argue that Bayesian belief network
(BBN) may exhibit higher performance. In this study we
compared the performance of an ANN and a BBN used in
the same CAD scheme. The common databases and the
same genetic algorithm (GA) were used to optimize both
networks. The experimental results demonstrated that
using GA optimization, the performance of the two
networks converged to the same level in detecting masses
from digitized mammograms. Therefore, in this study we
concluded that improving the performance of CAD
schemes might be more dependent on optimization of
feature selection and diversity of training database than on
any particular machine classification paradigm.

Key Words: Artificial neural network, Bayesian belief
network, Genetic algorithm, Computer-assisted diagnosis.

I. Introduction

After intensive investigation for more than a decade by
many research groups, a large number of computer-
assisted diagnosis (CAD) schemes in mammography have
been developed [1-10]. For mass detection, the CAD
schemes usually adopted three steps to identify positive
and negative mass regions. In the first step, they use
different image segmentation methods to filter out basic
tissue structure and select initial suspicious regions. The
second step is to compute or extract features from each
suspicious region. Then, the third step uses a classifier to
identify positive and negative regions based on the set of

extracted features. Although each scheme was
independently developed using databases of limited size,
most current CAD schemes yield similar performance (i.e.,
85% to 90% sensitivity with 1 to 2 false-positive regions
per image in mass detection). Unlike many other pattern
recognition problems where the feature domain is
reasonably limited and well defined (e.g., optical character
recognition), the feature space in CAD of mammography
is very complex, due to wide diversity of normal tissue
patterns and variety of abnormalities. To improve CAD
performance, a large number of features are usually
extracted. Most of these features are neither visible nor
understandable by human observers. It is very difficult to
find the correlation and effectiveness of these features in
identifying masses in mammograms. Thus, many machine
learning (classification) methods have been tested to
identify the positive mass regions based on a set of
computed features. Artificial neural networks (ANN) are
the most popular paradigm used as a machine learning
classifier in current CAD schemes.

The ANN uses “hill-climbing” approach to learn the
correct response or output for each of the training samples.
After training, the structure of the ANN has been self-
organized to enable extrapolation when faced with new,
yet similar, patterns, on the basis of “experience” with the
training set. One attractive feature when using an ANN in
a complex pattern recognition problem is that the required
amount of a priori knowledge of the input features and
internal system operation is minimal [11]. Although ANNs
have the ability to learn complex patterns directly from
observations, their reasoning process is inaccessible to
human understanding and observers cannot be certain what
the ANN has learned [12]. Because of this, it may be hard
for physicians to accept and act on a computer system’s
advice without knowing the basis for the system’s decision
[13]. Furthermore, due to “hill-climbing” optimization
process of the ANNSs, the possible data over-fitting may




significantly deteriorate the robustness of ANN-based
CAD schemes in real clinical environment [14].

Bayesian belief networks (BBN) use different training
concept. A BBN is a causal probabilistic network that
compactly represents the joint probability distribution of a
problem domain by exploiting conditional dependencies.
The BBN captures knowledge of a given problem domain
in a natural and efficient way. A BBN can also explain its
reasoning and can avoid the danger of data over-fitting
[15]. Because of these unique characteristics, BBNs have
been widely used in many machine learning applications
[16]. In the area of computer-assisted diagnosis of breast
cancer, some researchers have claimed that BBNs should
perform much better and more reliably than ANNs [17].
Because in current CAD studies, different schemes have
been trained and tested using different databases,
performance of these schemes can not be compared [18].

In this study, we used the same database to train both an
ANN and a BBN. After optimizing the topologies of these
networks using a genetic algorithm (GA), an independent
database was used to test the performance and robustness
of the ANN and the BBN. In this way, we can objectively
compare the performance and robustness of the ANN and
the BBN based CAD schemes developed in this
experiment. A description of the approach, along with the
preliminary experimental results derived from three
independent databases involving total of 1,557 images, is
presented here.

I1. Materials and Methods
2.1. Three independent databases

Three independently acquired image databases were used
in this study. The first one was used for training the
networks. The second was used to evaluate a fitness
function in the GA, and the third was used to assess the
performance and robustness of the optimized networks.
Three databases, which were acquired from three different
medical centers, included 545, 579, and 433 images. All of
these 1,557 images were digitized in our laboratory using
the same laser film digitizer (Lumisys 150) with a pixel
size of 100 um x 100 pm and 12-bit gray-level resolution.
The digitized images were then sub-sampled by a factor of
four in both directions to generaté new images with sizes
of approximately 600 % 450 pixels. In each database there
is a mixture of images with and without mass regions. All
masses were pathology verified. The locations of these
verified mass regions in the original film mammograms
were identified by expert radiologists in the different
medical centers where the mammograms were acquired.
Most of the “negative” images in these databases were
considered to be difficult controls because they had dense
breast parenchyma with highly fluctuated image features.

It should be noted that because in this study we were only
interested in mass detection, an image without a positive
mass was considered as a “negative” image even though it
might contain other abnormalities (i.e., microcalcification
clusters).

The 1,557 images were individually processed by our
multi-layer topographic based CAD scheme which has
been described elsewhere [3]. In brief, this scheme has
three distinct stages for the identification of suspicious
regions. The first stage of dual kernel filtering, subtraction,
thresholding, and labeling resulted in the selection of a
large number of suspicious regions (approximately 18
regions per image when applied to these image databases).
Based on local contrast measurements, the second stage
used an adaptive region growth algorithm to define three
topographic layers for each suspicious region. In each
growth layer, a set of simple intra-layer boundary
conditions on the growth ratio and change of shape factor
of the region was applied to eliminate a large number of
initial suspicious regions (> 80%), which may included
both positive and negative regions. Only the regions that
successfully pass through three topographic growths were
retained as suspicious regions for further classification.
After the second stage, the number of suspicious regions
(including both positive and negative regions) decreased to
5,560 (approximately 3.6 per image) in these 1,557
images. For each of these remaining regions, a set of
image features was automatically computed by our CAD
scheme. Using these features, in the third stage of the
scheme, different classification tools based on nonlinear
multi-layer feature analysis were incorporated to identify
positive and negative mass regions. The classification tools
that have been tested in our previous studies include a rule-
based expert classifier [3], set enumeration trees [8], an
ANN [19], and a BBN [20}. In this study, both an ANN
and a BBN were used as classification tools. All suspicious
regions identified by the second stage of the CAD scheme
were included in the experimental databases.

772 of these 5,560 regions depicted verified masses, while
4,788 suspicious regions were actually negative. With the
exception of the suspicious regions that matched the
verified masses, all other regions that had been identified
by our CAD scheme in the second stage as suspicious were
determined to be negative. No pathologic verification was
available for the negative regions. In summary, there are
288, 172, 312 positive mass regions in these three image
databases, respectively. The CAD scheme detected 1,651,
1,876, 1,261 negative (false-positive) regions in these three
image databases. A feature vector extracted by the CAD
scheme was used to represent each suspicious mass region.
This feature vector contains 38 features. Within these
features, 32 were computed from the interior of the region
and its surrounding background, which were considered to
be local features, while the other six were global features




that represent the global tissue patterns of the breast.
Definitions of these features and related computational
methods using our CAD scheme have been described
elsewhere [8,19,20].

2.2. Topology of networks and GA initialization

In these experiments, all 38 features were used to train and
test the classifiers. The topologies of the ANN and the
BBN are different. The ANN has 38 input neurons, 16
hidden neurons, and one output neuron. The topology of
the BBN was similar to the BBN that we have developed
and tested for mass detection in our previous studies [20].
Basically, the six global features are located in the top
layer of the network and comprise the “parent” nodes to
detection node (output for the mass identification). The 32
local features are “child nodes” located in a layer below
the detection node. Unlike the ANN where the input
features are continuous data (e.g., from O to 1), in a BBN,
each node must be quantified to a fixed number of
exclusive states. The continuous data for these features
must be converted to discrete data. In this study, each
feature was divided into five discrete states. The methods
to convert these features into discrete states have been
reported elsewhere [20]. Although each feature vector
contains 38 features, many of them might be redundant.
The redundant features used in the input nodes of an ANN
or a BBN make very little contribution to information but
add a lot of noise, which result in poor generalization for
the networks. Evan though the topology of a BBN can be
interpreted, manual selection of independent and effective
features is a difficult task. To find a small number of
independent features and eliminate the redundant ones in
this feature vector, a genetic algorithm (GA) was used to
optimize feature set and topologies of the ANN and the
BBN. The GA software, GENESIS, was acquired from
Prime Time Freeware for Al [21] and used in this study.

A GA solves a complex optimization problem by
emulating evolutionary concepts that only the strongest
survives. A population of possible chromosomes is created,
evaluated, recombined, and mutated to generate more and
different chromosomes. The best are kept as a basis for
evolving better chromosomes. In general, a GA involves
the steps of initialization, evaluation, selection, search, and
termination [22]. Although the software, GENESIS,
provides a basic program structure for optimization, users
need to determine many detailed parameters and functions,
such as encoding, fitness function, and evaluation
criterion.

Based on their distributions in our databases, each of the
38 features was normalized to a range between O and 1. In
the GA, a binary coded chromosome was used. Each
feature corresponded to a gene in a chromosome (or a bit
of the structure defined in GENESIS). In this binary coded

chromosome, / indicates the presence of a gene (the
feature is used as an input node) and 0 indicates its absence
(the feature is rejected). In our experiments, all
chromosomes have fixed length of 38 (including six global
features and 32 local features). The initial population size
of the chromosomes was set as 50. In order to incorporate
our experience in the feature selection and also to achieve
a diverse initial population, about one third of the initial
chromosomes were manually selected with a small number
of bits of I (< 10), while the rest of initial population was
randomly assigned by GA software. Meanwhile, the
crossover rate, the mutation rate, and the generation gap
used in the GA were set at 0.6, 0.001, and 1.0,
respectively.

2.3. Optimization of feature selection

From initial 38 features, we used GA to select sub-sets of
features, x;,i=12,...,n, where n <38. The selected

features were then connected to the input neurons in the
ANN and the probability nodes in the BBN. The number

of hidden neurons (hj,j =1,2,...,m)in the ANN was

determined as half of the input neurons, or
m = (int)(0.5+n/2). There is one neuron in the

output layer to represent the result of mass detection. The
detailed description of the ANN structure used in our CAD
scheme was previously reported [19]. In this study, the
number of training iterations was fixed at 1,000. The
momentum and learning rate were set as 0.8 and 0.01,
respectively. In the BBN, the features selected by the GA
were located in the different nodes. If the selected feature
was a global feature, it was placed in the top layer,
otherwise the feature was connected to one of the “child”
nodes in the BBN.

Because a GA is a task independent optimizer, users must
provide or define a fitness function and an evaluation
criterion, so that the GA has an optimization goal. In the
experiments, the fitness function was the receiver
operating characteristic (ROC) curve, and the evaluation
criterion was the maximum area under the ROC curve

(AZ value). ROC curves were generated by the ROCFIT

program [23], based on output data from the networks.
Once GA selected a chromosome, a set of features was
also extracted to be used in the networks. The training
database was used to train the ANN by setting its weights
or to train the BBN by computing the conditional
probability table. After training the networks, the second
database (or evaluation database) was used to examine the
performance of the networks. The output values of
evaluation were directly used as input data to compute a

ROC curve. The ROCFIT program produced an AZ value
for each selected chromosome. Chromosomes with higher




A, values have higher priority to be selected to generate

new chromosomes in next generation by the GA using the
techniques of crossover and mutation. The GA was

terminated when it had converged to a maximum AZ value
or the searching generation has reached to 50. Two
chromosomes that produced highest Az values for the

ANN and the BNN were selected to build an optimal ANN
and an optimal BBN, respectively. The performance and
robustness of these networks were compared using another
independent testing database containing 312 true-positive
mass regions and 1,261 false-positive regions. This test
database was never involved in any of the optimization
processes. Finally, we tested a hybrid classifier, in which
feature vectors passed through two networks separately,
and the ultimate output was the average score from the
outputs of the two networks.

II1. Results

Using the same training database and all 38 features to
train and test the ANN and BBN, we achieved Az values

of 0.791 + 0.012 and 0.783 + 0.011 on the evaluation
database involving 172 positive mass regions and 1,876
negative regions for the ANN and BBN, respectively.

Table 1 demonstrates that after GA optimization, the
number of features selected in both ANN and the BBN
have been significantly reduced. Less than half of the
original 38 features were retained for these two networks.
Although the features selected in two networks were not
exactly the same, the performance levels of the two
networks converged to the same level.

Table 1: Optimization results for the ANN and the BBN.

Network Number of Number of A
local features global features ‘
ANN 12 2 0.866
BBN 14 = 3 0.868

In an independent test of these optimal networks, the
results for the ANN and the BBN remained at the same

level. For the ANN, Az value was 0.847 + 0.014, and for
the BBN, Az value was 0.845 * 0.011. Finally, using a
hybrid classifier containing both the ANN and the BBN,
the AZ value on the test database was increased to 0.859 *
0.01.

IV. Discussion

Objectively evaluating CAD performance and robustness
is a very complicated and difficult task [18]. The

performance of a scheme depends on many factors, such as
case difficulty in the training and testing databases [24],
the size of training database [19], validation methods [25],
and the ground truth for the comparison [26]. Basically,
the CAD schemes that developed at different institutions
and optimized using different databases are not
comparable [24]. In this study, we used the same database
and the same optimization protocol to train and test two
machine learning classifiers, an ANN and a BBN. Hence,
the performance of these two networks can be objectively
compared. When applied to a new independent database,
the performance deterioration of a CAD scheme may be
caused by two factors. The first is bias in the training
samples due to the limited size of the training set
compared to the diverse feature distributions in real
clinical testing populations. The second is data over-fitting
in certain learning algorithms, which makes classifiers
much more sensitive to the noise patterns in the testing
samples. The ANN and BBN represent two very typical
and popular classifiers used in CAD. The ANN uses a
black box “hill-climbing” method to search for the
relationship between training samples and classification
results. Both the sample bias and the data over-fitting have
impact in the robustness of the ANN. The BBN uses
Bayesian probability theory to find the optimal relationship
between the input features and output results. Although
there is no data over-fitting problem in the BBN, bias in
the learning samples generates incorrect probability tables
that reduce the robustness of the BBN. As a result, the
ANN usually outperforms the BBN in training results, but
falls behind in testing new cases. In our experiments,
several methods have been used to minimize over-fitting
during ANN training, which include limiting the number
of training iterations and maintaining a large ratio between
momentum and learning rate [11]. The training iteration
number was limited to 1,000 and the ratio between
momentum and learning rate was set at 80.

Although data over-fitting is a potential danger to testing
an ANN, by using a GA and setting an appropriate fitness
criterion, the impact of over-fitting can be significantly
reduced, as shown in this study. In both optimization and
independent testing, the ANN and the BBN achieved the

same performance level (AZ value), which clearly

indicates that, in this experiment, the performance
“deterioration” in independent testing is mainly caused by
the bias in the training database. There is no significant
difference between using an ANN and a BBN in our CAD
scheme for mass detection, as long as each network has
been properly optimized or trained. This study
demonstrated that improving performance and robustness
of CAD schemes might be more dependent on feature
selection and database diversity than on any particular
machine learning or classification algorithm.
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ABSTRACT

This study is to investigate the effectiveness of
using genetic algorithm (GA) to optimize the feature
selection and improve the performance of decision
making in computer-assisted diagnosis (CAD) schemes of
mammography. Three databases involving 1,557 images
were used. A CAD scheme was applied to search for
initial suspicious mass regions in images and extracted 32
features from each region. Two different classifiers, an
artificial neural network (ANN) and a Bayesian belief
network (BBN), were then used to identify positive and
negative mass regions. Using GA optimization, about half
of 32 features was eliminated from both the ANN and the
BBN to obtain optimal performance. Although GA
selected different features for the ANN and BBN, using
ROC analysis, two networks yielded similar performance.
Compared to the networks using 32 features, the optimal
ANN and BBN obtained better performance. The area

under ROC (AZ value) was incredsed from 0.81 to 0.88

and 0.79 to 0.88 in the ANN and BBN, respectively. The
robustness of both networks was tested using an

independent database which produced Az values higher

than 0.86. This study demonstrated that (1) the GA could
provide an effective approach to optimizing CAD
schemes, and (2) the performance of the CAD schemes
depended more on feature selection and database diversity
than on the particular classification method.

Key Words: Genetic algorithm, Computer-assisted
diagnosis, Artificial neural network, Bayesian belief
network, Medical decision making.

1. INTRODUCTION

There is a rapidly growing interest in developing
computer-assisted diagnosis (CAD) schemes to provide
assistance with decision making in medical image
diagnosis. For example, in mammography, after very
intensive investigation by a large number of research
groups around the world for more than a decade, many
CAD schemes have been developed [1-10]. For mass
detection, CAD schemes usually follow three steps in
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identifying positive and negative regions. In the first step,
the CAD schemes use different image segmentation
methods to filter and select initial suspicious regions. In
the second step, CAD schemes compute and extract a set
of features from each suspicious region. Then, in the third
step, a classifier (i.e., an artificial neural network (ANN))
is used to identify positive and negative regions based on
a subset of the extracted features. Due to the complexity
of imaged breast tissue patterns, visually defining
effective features to identify positive and negative mass
regions is extremely difficult. Thus, a large number of
image features are initially extracted from each suspicious
mass region by many CAD schemes. For example, the
number of initially selected features can be as much as
587 [7]. Actually, in a small suspicious region, only small
number of features has independent values, while others
are redundant. Because of the noise in the database,
increasing the number of redundant features can
significantly deteriorate robustness of a classifier [11]. As
a result, optimally selecting features is very important for
achieving good performance and robustness of CAD
schemes.

Many feature selection methods have been tested
in CAD schemes, such as empirical histogram and
correlation analysis [4,11], stepwise feature analysis [5],
and genetic algorithms (GA) approach [7]. Because most
of the features extracted by CAD schemes are not visible
or understandable to human observers, machine learning
methods may be more effective and efficient for feature
selection for CAD schemes. Among these methods, GA
techniques have attracted much attention. Using a large
number of random seeds spread over the feature space, a
GA has capability of parallel processing and searching for
a subset of features that can generate an optimal
classification result based on its evaluation criterion.
Although GAs have been employed for feature selection
for CAD schemes by other researchers [7,12], it is not
clear whether the GA selected the optimal feature set,
because GA is susceptible to problems of the “hill-
climbing” process, and it does not guarantee finding
global maxima. In this study, we investigated the
effectiveness of GA in feature selection by comparing the
results with those obtained using a progressive round-off
searching method [13]. Although it is not as efficient, the




progressive round-off method can guarantee finding
“close-to-best” performance.

Specifically, in this study, GA was used to
optimize the feature set and topology of an ANN and a
BBN (Bayesian belief network) incorporated in our CAD
scheme for mass detection. A description of the approach,
along with the experimental results with three
independent databases involving total of 1,557 digitized
mammograms, is presented here.

2. MATERJALS AND METHODS
2.1. Databases:

Three independently acquired image databases
from three different medical centers were used in this
study. The first database was used to train the weights in
the ANN or compute the conditional probabilities in the
BBN. The second database was used to evaluate the
performance of two networks. The third database served
as an independent testing database to examine robustness
of the CAD scheme incorporating the ANN or the BBN
after GA optimization. There are 545, 433, and 579 film
mammograms in these three databases, respectively. All
1,557 mammograms were digitized in our laboratory
using the same laser film digitizer with a pixel size of 100
pm X 100 pm and 12-bit gray-level resolution. The
digitized images were then sub-sampled by a factor of
four in both directions to generate new images of
approximately 600 x 450 pixels. In each database there is
a mixture of images with and without positive mass
regions. All positive masses were pathology verified. The
locations of the visible mass regions in the original film
mammograms were marked by expert radiologists in the
three medical centers where these mammograms were
acquired. Most of the “negative” images in the databases
were considered to be difficult controls, because they had
dense breast parenchyma with highly fluctuated image
features.

Each image was then processed by a multi-layer
topographic based CAD scheme developed in our
laboratory {3]. In brief, this scheme has three distinct
stages for the identification of suspicious masses. The
first stage of dual kernel filtering, subtraction, and
labeling resulted in the selection of a large number of
suspicious regions (approximately 20 regions per image
when applied to these image databases). Based on local
contrast measurements, the second stage used an adaptive
region growth algorithm to define three topographic
layers for each suspicious region. In each growth layer, a
set of simple intra-layer boundary conditions on region
growth ratio and shape factor of the region was applied to
eliminate many initial suspicious regions (> 80%), which
included both positive and negative regions. Only the
regions that successfully passed three topographic region
growths were retained for further classification. After the
second stage, the number of suspicious regions (including

both positive and negative regions) decreased to 6,774
(approximately 4.35 per image) in these 1,557 images.
For each of the remaining regions, a set of image features
was automatically computed by the scheme. Using these
features, the third stage of the CAD scheme used a
classification tool based on nonlinear multi-layer feature
analysis to identify positive and negative mass regions.
The classification tools that have been tested in our CAD
studies include a rule-based expert system [3], set
enumeration trees [9], an ANN [14], and a BBN [15]. In
this study, two classifiers, an ANN and a BBN, were
tested and compared. All of the 6,774 suspicious regions
identified by the second stage of the CAD scheme were
included in the experimental databases.

742 of these 6,774 regions depicted verified
masses, while 6,032 suspicious regions were actually
negative. With the exception of the suspicious regions
that matched the verified masses, all other regions that
identified as suspicious by our CAD scheme in the second
stage were determined to be negative. In summary, the
training database included 288 mass regions and 2,202
actually negative regions. The evaluating database had
304 mass regions and 1,586 negative regions, and the
database for testing the robustness of the CAD scheme
consisted of 150 mass regions and 2,252 negative regions.
The image feature distributions (or conspicuity) of these
positive and negative mass regions have been reported
elsewhere [16]. For each suspicious mass region, a vector
of 32 features was extracted by the CAD scheme. Within
these features, 27 were computed from interior of the
region and its surrounding background, which were
considered as local features, while the remaining 5 were
global features that represent the location of the region in
the image and overall tissue patterns of the breast. The
definitions and methods used to compute these features by
our CAD scheme have been described elsewhere [14-16].

2.2. Progressive round-off search:

The performance of the ANN and the BBN is
evaluated using ROC (receiver operating characteristic)
methodology. The outputs of sets of testing samples from
the classifiers are evaluated by a standard ROC analysis
program [17]. A larger area under ROC curve (or the

higher AZ value) indicates better performance of the

classifiers. Before we tested the effectiveness of the GA
in optimizing the feature set for our CAD scheme, we
defined a “close-to-best” reference that was selected from
the initial 32 features. The most reliable approach to
finding a best feature set (the global maxima in the feature
space) would be a complete permutation search, as we
have previously demonstrated [18]. However, due to
limitations of computing power, applying a complete
permutation search to these 32 features is computationally
impractical. An alternative defining a “close-to-best”
feature set is to use a progressive round-off search. To
search for an optimal set of features from N extracted
features, the progressive round-off method starts from m




features (m<N) that are previously identified as belonging
to the “close-to-best” feature set. From these m features,
the approach adds one of the remaining features to the
feature set. After finding the highest performance
involving m+1 features; the scheme fixes these m+1
features and searches for an additional feature. The
process continues recursively until performance can not
be further improved by adding a new feature [13]. Our
previous study [18] demonstrated. that this progressive
round-off method could find a “close-to-best” feature set
for a BBN incorporated in a CAD scheme. An exhaustive
permutation method was used to search for initial 10
optimal features in this experiment. Then the progressive
round-off method was applied to find the remaining
features to be included in the “close-to-best” reference.

2.3. Initialization of GA:

The GA software, GENESIS [19], was used in
this experiment to search for the optimal features for the
ANN and the BBN. Each feature corresponded to a gene
in a chromosome. Thus, all chromosomes have fixed
length of 32 (including 5 global and 27 local features).
Binary coding was used to create a chromosome, with /
indicating the presence of a gene and 0 indicating absence
of a gene. Other initial parameters required in the
software were selected and adjusted based on the
experimental results. The initial population size of
chromosomes was set at 50. In order to incorporate our
experience in the feature selection and also to achieve a
diverse initial population, about one third of initial
chromosomes were manually selected with small number
of bits of 1 (< 7), while the rest of initial population was
randomly assigned by GA software. The crossover rate,
the mutation rate, and the generation gap were set at 0.6,
0.001, and 1.0, respectively.

2.4. Optimization of feature set using GA:

Two classification networks, ANN and BBN,
were used to identify positive masses. The detailed ANN
and BBN topologies used in our CAD studies have been
reported before [14,15]. Because GA is a task
independent optimizer, users must define a fitness
function and an evaluation criterion reflecting the
optimization goal of the GA. In this experiment, the

fitness function was Az , the area under ROC curve, as

determined by the ROC analysis. In each GA search, a set
of features represented by a selected chromosome was
extracted from the training database. The training samples
were used to train the weights connecting the neurons in
the ANN or compute the conditional probability table in
the BBN. The second database was then used to examine
the performance of the networks. The evaluation criterion

of the GA was the highest A, value of this database. The

chromosomes with higher Az values had higher

probabilities of being selected in generating new

chromosomes for the next generation by GA using the
methods of crossover and mutation. The GA was

terminated when it converged to the highest Az value.

Since the effectiveness of the GA depends on the
selection of many initial parameters, we first used GA to
optimize feature selection in the BBN, so that we can test
the effectiveness of GA by comparing the result with that
obtained from the progressive round-off approach. In the
BBN, five global image features were used as fixed parent
nodes of the mass detection node. The child nodes of the
mass detection were selected from 27 local image
features. The detailed description of the BBN for mass
detection has been reported elsewhere [15]. After the best
initial parameters were determined in the GA, the GA was
applied to search for the optimal feature set for the ANN.
The selected features (n < 32) by the GA were used as
input neurons in the ANN and the number of hidden
neurons was set at half the number of input neurons.
Weights in the ANN were trained using the training
database. In our experiments, several methods have been
used to minimize over-fitting during ANN training, which
include to limiting the number of training iterations and
maintaining a large ratio between the momentum and
learning rate. The number of training iterations was fixed
at 1,500, while the momentum and learning rate were set
as 0.8 and 0.01, respectively. Ratio between momentum
and learning rate was 80. The top five chromosomes
(feature sets) selected by the GA search for the ANN and
the BBN were recorded. They were used to demonstrate
the optimal performance achieved by the ANN and the
BBN. The robustness of two networks was also examined
using an independent testing database, which had not
previously been involved in GA optimization process.

3. RESULTS

Using all 32 features as input nodes of the two
networks, the Az values were 0.813 £ 0.015 and 0.794 £
0.012 from the evaluating database involving 304 positive

mass regions and 1,586 negative regions in the ANN and
the BBN, respectively. The progressive round-off method
selected 15 features that could achieve the highest Az
value of 0.876 £ 0.011 in the BBN. Using the initial
parameters for the GA, the highest AZ value obtained in
the optimal BBN search was 0.859 *+ 0.009 using 17
features. Although the performance was better than using
all of the 32 features, GA did not find the best feature set.
In the second test, the population size of the GA was
increased from 50 to 100. The best chromosome found by

GA represented the same “close-to-best” set of features
determined in the progressive round-off method.

Then, the GA was used to find an optimal feature
set for the ANN. Tables 1 and 2 list the top five optimal

feature subsets and their corresponding Az values for




training, evaluating, and testing databases in the BBN and
the ANN.

Table 1: Top five optimal feature subsets in the BBN.

Feature | #of Training | Evaluation | Testing
set feature | database database database
1 15 0.906 0.873 0.865
2 16 0.901 0.871 0.863
3 14 0.904 0.873 0.863
4 15 0.905 0.876 0.868
5 17 0.905 0.872 0.864

Table 2: Top five optimal feature subsets in the ANN.

Feature | # of Training | Evaluation | Testing
set feature | database ‘database database
1 12 0.891 0.872 0.832
2 10 0.914 0.873 0.818
3 16 0.906 0.879 0.862
4 13 0.909 0.873 0.841
5 16 0.921 0.873 0.831

The average of top five A, values for both the

ANN and the BBN was increased to the same level (about
0.88). When using the optimized networks to test an

independent database, the Az values in five ANN tests
demonstrated larger fluctuation with maximum difference
of 0.044. The five Az values in the BBN tests were very

stable (with maximum differences of 0.002). Figure 1
demonstrates two ROC curves representing the best
testing performance in the ANN and the BBN.
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Figure 1: ROC curves comparing the two highest
performing BBN and ANN on the testing database. The

AZ values are 0.868 + 0.009 for the BBN and 0.862 *
0.012 for the ANN.

4. DISCUSSIONS

The performance deterioration in the CAD
schemes, when they are applied to new independent
databases, may be caused by two factors. The first is a
bias in training samples, due to the limited size of training
set and the diverse feature distribution in real clinical
testing populations. The second is over-fitting in certain
training algorithms. Over-fitting makes a machine
learning method more sensitive to the noise patterns in the
testing samples. The ANN and the BBN represent two
popular classifiers, or decision making tools, used in
medical image diagnosis. The ANN uses a simple
heuristic search to find relationship between the training
samples and classification results. Both the sample bias
and over-fitting have impact in the robustness of the
ANN. The BBN uses Bayesian probability theory to find
the optimal relationship between the input features and
output results. Although there is no over-fitting problem
in the BBN, the bias in the learning samples can generate
incorrect probability tables, which reduce the robustness
of the BBN. This study demonstrated that optimization of
the feature set (or input nodes) used in the ANN and the
BBN played an important role to in improving CAD
performance and robustness.

Feature extraction can be considered as a form of
data compression that removes irrelevant information and
preserves relevant information from the raw data.
Usually, large number of features is nitially extracted
from a suspicious mass region in mammogram. Most of
these features are redundant. The incorporation of an
optimal set of features in an ANN or a BN presents issues
that are similar to the typical signal-to-noise ratio
problem. In real application of medical image processing,
every feature contains both information (signal) and
noise. The redundant features used in the input nodes of
the ANN or the BBN make very little contribution to the
information but add a lot of noise. An important lesson
about generalization (or robustness) of a supervised
machine learning classifiers can be learned from statistics;
too many free parameters results in over-fitting. A curve
fitted with too many parameters follows all small details
or noise but is very poor for interpolation and
extrapolation [20]. The same is true for the ANN and the
BBN. Too many weights (or nodes) in a network give
poor generalization. Therefore, optimization of feature
sets for medical image diagnosis involving an ANN or a
BBN is important. Many methods of feature selection or
optimization have been reported in medical image
processing. Most of these rely heavily on input or
judgement from users’ empirical knowledge, which is
very difficult. The advantage of using a GA is that users
do not need to have much pre-knowledge about the
features. A GA has the ability to find a “close-to-best”
feature set for use in different machine learning
algorithms, if the proper initial parameters are chosen.
Compared to the progressive round-off search methods, A
GA is much more efficient. This experiment demonstrated




that using appropriate initial parameters and a fitness
criterion, the GA could be used as an effective approach
for optimizing feature subset and network topology for
decision making in the CAD of mammography.

Although over-fitting is a potential danger in
training an ANN, this study also found that by using a GA
optimization technique with an appropriate fitness
criterion, the impact of over-fitting could be significantly
reduced in the ANN. After separating the databases used
for training or computing the weights in the networks and
for optimizing the fitness evaluation in the GA, the
performance and robustness of both the ANN and the
BBN on a new independent testing database converged to
the same level. Therefore, the improving the performance
and robustness of CAD schemes may be more dependent
on feature selection and database diversity than on any
particular machine learning or classification paradigm.
Although this experiment was applied to the CAD of
mammography, the conclusions obtained could also be
applied to other schemes used for computer-assisted
diagnosis on other kinds of medical images.
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